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Abstract

Background: Molecular typing methods are commonly used to study genetic relationships among bacterial

isolates. Many of these methods have become standardized and produce portable data. A popular approach for

analyzing such data is to construct graphs, including phylogenies. Inferences from graph representations of data

assist in understanding the patterns of transmission of bacterial pathogens, and basing these graph constructs

on biological models of evolution of the molecular marker help makes these inferences. Spoligotyping is a widely

used method for genotyping isolates of Mycobacterium tuberculosis that exploits polymorphism in the direct

repeat region. Our goal was to examine a range of models describing the evolution of spoligotypes in order to

develop a visualization method to represent likely relationships among M. tuberculosis isolates.

Results: We found that inferred mutations of spoligotypes frequently involve the loss of a single or very few

adjacent spacers. Using a second-order variant of Akaike’s Information Criterion, we selected the Zipf model as

the basis for resolving ambiguities in the ancestry of spoligotypes. We developed a method to construct graphs

of spoligotypes (which we call spoligoforests). To demonstrate this method, we applied it to a tuberculosis data

set from Cuba and compared the method to some existing methods.

Conclusions: We propose a new approach in analyzing relationships of M. tuberculosis isolates using

spoligotypes. The spoligoforest recovers a plausible history of transmission and mutation events based on the
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selected deletion model. The method may be suitable to study markers based on loci of similar structure from

other bacteria. The groupings and relationships in the spoligoforest can be analyzed along with the clinical

features of strains to provide an understanding of the evolution of spoligotypes.

Background

The visualization of relationships among genotypes of bacterial isolates is a useful approach to addressing

both evolutionary and epidemiological questions. Inferences from graph representations of data assist in

understanding the patterns of transmission of bacterial pathogens. Presently, there are two approaches to

visualization. The first class of methods is sequence-based, and these methods often produce phylogenetic

trees, or dendrograms. These trees are used extensively to represent relatedness of isolates that have been

identified by almost any typing procedure. However, the models of sequence evolution upon which

phylogenetic methods depend are not appropriate for many markers that are not sequence-based. Also,

because many of these markers evolve rapidly enough to generate intra-specific variation, it is preferable to

show direct relationships between genotypes. Bacterial isolates often cluster into the same genotype, and

dendrograms are not suited to showing these clusters.

The second class of methods produce “network-like” graphs that show direct relationships between clusters

of genotypes. Some examples of this second class of methods are found in the works of Zhu et al. [1],

Tanaka and Francis [2] and Excoffier and Smouse [3]. The genoclouds in Zhu et al. [1] consist of related

isolates of Nesseria meningitidis that are grouped according to criteria that minimize genetic, temporal

and physical distances. The result is a parsimonious tree that depicts the relationships between the

genoclouds. Similarly, Tanaka and Francis [2] proposed cluster-graphs where isolates of Mycobacterium

tuberculosis sharing the same genotype are assigned into clusters, and all possible close relationships

between these clusters are shown. In both these methods, clusters are associated with epidemiologically

linked cases of infection. Guernier et al. [4] developed a technique of representation that is based on the

cluster-graph, with two additional elements included: (1) concentric circles to show the number of possible

mutation steps between spoligotypes, and (2) hypothetical intermediate nodes to visualize possible links

between clades of spoligotypes known to be related. Excoffier and Smouse [3] used an analysis of molecular

variance to construct minimum spanning trees and networks to represent genetic relatedness. See Posada
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et al. [5] for a more general discussion of graphical methods to represent relationships.

The eBurst package [6, 7] is designed for visualizing data from multi-locus sequence typing (MLST).

Isolates that have similar sequence types are assigned to disjoint groups, where similarity depends on the

number of shared alleles in the MLST profile. The radial layout of eBurst diagrams shows groups or

subgroups of related genotypes, centered around the inferred founding genotypes. The complexity of an

eBurst diagram suggests the age of the clonal complex; a clonal complex is considered young when its

structure is simple and older when its structure is complex. There are many genotyping technologies

enabling the study of genetic variation in bacteria. Here, we focus on spacer oligonucleotide typing

(spoligotyping), a technique that exploits polymorphism in the direct repeat (DR) region of

M. tuberculosis [8, 9]. This method has gained widespread use for differentiating isolates of M. tuberculosis

over the last decade [10]. The DR region is composed of numerous identical 36-base-pair direct repeats,

interspersed by nonrepetitive short sequences or direct variable repeats (DVRs) called spacers. Mechanisms

known to cause variation in this locus are homologous recombination between adjacent or spatially distant

DRs leading to deletion, and transposition and recombination of IS6110 elements in the DR locus [9, 11].

The DR locus has been identified as a hotspot for the integration of insertion elements in the chromosome

of M. tuberculosis complex strains [12]. Such insertion into a spacer sequence can lead to the apparent

deletion of that spacer [13]. It is presumed that spacers cannot be recovered when lost, since there is little

or no recombination observed between strains [14].

It is possible that there is a relationship between the presence of some number of spacers in specific

positions and the transmission rate of a strain, as seen by the lack of a length of spacers in the W-Beijing

strain, which is prevalent in many data sets. However, in our model, we assume that a deletion event has

no relation with the transmission rate, and any such relationship is beyond the scope of our study. We

refer the reader to papers that discuss the importance of studying the W-Beijing type and its

transmission [15,16].

In this paper we examine the problem of determining a plausible evolutionary history of a sample of

tuberculosis spoligotypes using an explicit model of the evolution of the DR locus. We start with the

cluster-graph construct of Tanaka and Francis [2] to represent all possible mutation events in a sample of

spoligotypes. Nodes of a cluster-graph represent distinct spoligotypes in a sample, and edges drawn

between nodes determine the possible mutation events. By mutation we mean a deletion of one or more

spacers in a spoligotype. Even for moderately large samples, this can lead to a tangled network of

relationships between spoligotypes, which can hinder further analysis. In particular, many spoligotypes
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appear to have originated from multiple parent spoligotypes. One solution to this problem is to randomly

sample edges from a set of multiple inbound edges [17]. However, some edges (mutation events) may be

more likely than others to explain the origin of a given spoligotype. We formulate a variety of models to

describe the deletion processes that generate variation in the DR locus, and identify an appropriate model

using Akaike’s Information Criterion. The selected model can then be used to choose a single inbound edge

into a specific spoligotype. Applying this procedure to each spoligotype with multiple inbound edges in a

sample, we can refine the cluster-graph. We call the resulting graph a spoligoforest.

Methods

We present several candidate deletion models of spoligotype evolution, then compare them using a

second-order form of the Akaike’s Information Criterion (AICc) and data from selected published

spoligotype samples (see Table 1). In this section we begin with the underlying assumptions about

spoligotypes and their evolution. We then outline the procedure for model selection and finally describe

the models.

Assumptions on the evolution of spoligotypes

A spoligotype consists of 43 binary characters. Each binary character denotes the presence or absence of a

spacer in the DR locus of M. tuberculosis. The copy number of a spoligotype refers to the number of

spacers present in its binary pattern. It is assumed that a mutation event involves the deletion of any

number of adjacent spacers from the spoligotype; deleted spacers are not recovered, so that the spoligotype

resulting from a mutation always contains fewer spacers than the parent. For our purposes we regard the

different mechanisms that influence variation in the DR locus to be indistinguishable. Furthermore,

deletion is the only source of variation. In our model we assume that a deletion event has no relation with

the transmission rate. We assume that the mutation rate is low enough relative to the transmission rate

that infected individuals carry only a single strain of M. tuberculosis with a specific spoligotype. When this

infecting strain mutates, it is replaced by a strain with a different spoligotype that has not been observed

elsewhere in the sample. Consequently, in any sample, a given spoligotype can have at most one possible

parent spoligotype, but potentially many descendants.
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Data sets and cluster-graphs

Given that spoligotypes mutate by deletions of adjacent blocks of spacers, we would like to know whether

some lengths of deleted adjacent blocks are more probable than others. Specifically, we would like to find

the frequency of each deletion size. There are many published tuberculosis data sets using spoligotyping as

a marker containing the information required for our purposes. We selected fifteen published data sets that

provide the spoligotyping pattern of each M. tuberculosis isolate in the sample and the number of isolates

that cluster into each pattern (see Table 1). We consider that individuals within a sample are sufficiently

close to each other for transmission to occur. These data sets come from various parts of the world, and

vary in statistical features such as RTIn−1 (in the range (0.3279,0.8055)), number of singletons (7,105),

average cluster size (1.8,6.7) and θ-estimate (2.73,66.25). Some of these quantities are discussed in [2]

and [10].

We use cluster-graphs as described in Tanaka and Francis [2]. We group isolates that have the same

spoligotype into clusters; each cluster is drawn as a node, and a possible single-event deletion that relates

two clusters (spoligotypes) is represented by a directed edge. Possible deletion events are established by

pairwise comparisons of spoligotype patterns. We define a spoligoforest to be a cluster-graph in which a

single parent is chosen for each cluster having one or more parents. Some clusters in a cluster-graph

already have a unique parent, and are likely to represent true deletions. This set of unambiguous deletion

events forms the sample of deletion lengths for the model selection. Table 2 (column 4) shows the number

of such edges from each data set. We assume that mutations occur independently of the state of the

population, and hence edges, which represent mutations, are independent. The edges from the different

data sets, representing independent deletion events, are pooled together in order to find analyze the

frequency of deletion lengths. We obtain an empirical distribution of deletion lengths represented by the

unambiguous edges from the fifteen data sets. The total pool of analyzed unambiguous edges consisted of

339 deletion events.

Candidate models for spacer deletion length in pattern mutations.

Our goal is to find a model that best describes the underlying process generating the distribution of

lengths of spacer deletions in the inferred mutation events. We formulated several candidate models based

on standard discrete distributions and various hypotheses on spacer deletion lengths. For each model we

found the maximum likelihood estimators (MLEs) of the parameters, analytically when possible, and

numerically otherwise. Let the observed number of deletions of length i be xi, where i can take values from
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1 to 43, let m be the total number of mutations analyzed (the unambiguous edges, in this case 339), and

let x̄ be the mean deletion length. Let the random variable K describe the deletion length associated with

a mutation event. In each of the candidate models, let P (K = k) (or P (k)) be the probability mass

function. The corresponding likelihood function is L(p|x) =
∏∞

k=1 [P (k)]xk , where p is the vector of

parameters, x is the frequency of deletion lengths collected from the data sets, k is the deletion length, and

xk is the frequency of the class of deletions with length k.

For each of the models, we computed the value of the second-order variant of Akaike’s Information

Criterion (AICc) [18] to select a parsimonious model. The AICc is given by the formula

AICc = −2 lnL(p̂|x) +
2ms

m − s − 1
(1)

where L is the likelihood, p̂ is the vector of parameters at the maximum likelihood, x is the frequency of

deletion lengths collected from the data sets, m is the sample size (the number of edges) and s is the

number of parameters in the model. Models with low relative AICc values are favoured. A summary of the

probability mass functions and (MLEs) can be found in Table 6.

Geometric model. Consider a deletion mechanism that moves along the DR region, making independent

attempts to remove a spacer. Let k be the number of spacers this mechanism is able to remove, and the

constant probability of the removal of a spacer is p. The probability mass function is P (k) = pk−1(1 − p),

where k ≥ 1 and 0 < p < 1. The MLE for p is p̂ = 1 − 1/x̄.

Negative binomial model. To generalize the geometric model, we define the negative binomial parameters p

and r. Consider a deletion mechanism that involves r rounds of spacer deletion, so that in total k spacers

are removed. Each of these r rounds removes a geometrically distributed number of spacers with parameter

p. The probability mass function is

P (k) =
(1 − p)r

1 − (1 − p)r

(

k + r − 1

r − 1

)

pk (2)

where k, r ≥ 1 and 0 < p < 1. The MLEs were found by solving p̂ = 1 − r̂/x̄ for r̂ and p̂. This was done by

considering the equations conditionally on 1 ≤ r̂ ≤ 10 to solve for the values of p̂ and inspecting the

likelihood.

Conditional Poisson model. In this model, the deletion process results in the loss of k spacers distributed as

a Poisson parameter λ > 0, conditional on k ≥ 1. The probability mass function is

P (k) = e−λ λk

k!(1 − e−λ)
(3)

with MLE λ̂ such that x̄ = λ̂/(1 − e−λ̂).
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Logarithmic model. Suppose the deletion process causes the loss of k spacers, following a logarithmic

distribution, given by the probability mass function

P (k) = −
θk

k log(1 − θ)
, (4)

with 0 < θ < 1 and k ≥ 1. The MLE is found by solving the equation x̄ = −θ̂

(1−θ̂) log(1−θ̂)
for θ̂.

Zeta model. Suppose the deletion process results in the loss of k spacers distributed as a zeta parameter ρ.

The probability mass function is

P (k) =
k−ρ

∑∞

d=1 d−ρ
(5)

with ρ > 1 and k ≥ 1. The MLE ρ̂ can be calculated numerically.

Zipf model. If we restrict the loss of k spacers to the interval 1 ≤ k ≤ 43, then the probability mass

function for the zeta model can be written with a finite sum in its denominator, i.e.,

P (k) =
k−p

∑43
d=1 d−p

. (6)

The MLE p̂ can be found numerically.

Uniform model. We consider a deletion process that cuts spacers in lengths distributed uniformly across

deletion lengths k up to some endpoint a. The probability mass function is P (k) = 1/a where k and a are

integers such that 1 ≤ k ≤ a and 1 ≤ a ≤ 43. We denote this model as Uniform (V), where the endpoint a

is a parameter, and is allowed to vary. The MLE â was found numerically. We also included a variation of

the uniform model where P (k) = p for all values of 1 ≤ k ≤ 43, with MLE p̂. We refer to this model as

Uniform (F), where the endpoint a is fixed at a = 43.

Empirical model. We include in the analysis a model that completely represents the empirical values of

deletion frequencies in the fifteen data sets used as reference (see Table 1). The probability mass function

is P (k) = xk

m where xk is the frequency of k-deletions and m is the total number of deletions, with

1 ≤ k ≤ 43. Setting the parameters to be pk for each k, the values of the MLEs p̂k are found analytically.

This model has 42 free parameters.

Results

We begin with some general observations about the relative frequencies of different deletion lengths. We

discuss the outcomes of the model selection procedure, and then apply the chosen model to a new

visualization method for representing relationships of isolates of tuberculosis.
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Inferred pattern mutations of spoligotypes frequently involve short spacer deletions.

The selected data sets independently show a high frequency of deletions of a single spacer. The pooled set

of edges are shown in the gray bars of Figure 1. The 339 single-event deletions are distributed as shown in

Table 3. Deletion lengths not appearing in Table 3 are not observed. The average number of spacers

deleted is x̄ = 2.46 and the standard deviation is 3.376. The skewed distribution of deletion sizes indicate a

high number of short deletions, and very few longer deletions. Note, it is conceivable that spoligotypes that

exist in the population but not sampled are intermediate in state between two sampled spoligotypes. If

such spoligotypes exist and are sampled then the distribution would shift further towards shorter deletion

lengths.

Model selection.

We selected the model with the lowest value of AICc (see Equation 1). This model is the Zipf model

(Equation (6)). AICc values and parameter estimates for some of the models are shown in Table 4.

Figure 1 shows a plot of the relative frequencies for deletion lengths estimated by each of the models as

well as the actual empirical values (gray bars). We verified that the selected model fits the individual data

sets well by repeating the analysis separately for the individual data sets. The Zipf model often has the

lowest AICc, while the logarithmic series and geometric models are selected in some individual data sets

(see Table 5).

Visualizing relationships among spoligotypes.

The selected model can now be used in a method to visualize relationships among M. tuberculosis isolates.

For a specific data set consisting of M. tuberculosis isolates typed using spoligotyping, we represent each

spoligotype by a node with area proportional to the number of isolates with that spoligotype pattern.

Inferred possible mutation events are represented by directed edges between nodes, with the arrowheads

pointing to descendant spoligotypes. This specifies the cluster-graph [2].

Multiple inbound edges into a node are reduced to a single inbound edge. We use a heuristic that chooses a

single inbound edge that has maximum weight. We define the weight w of an edge eAB in a cluster-graph

from spoligotype A to its descendant B to be:

w(eAB) =
P (d(eAB)) × nA

∑

i∈S

P (d(eiB)) × ni

(7)
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where P (·) is the model of deletion, d(·) is the deletion length represented by the edge, ni is the cluster size

of spoligotype i, and S is the set of nodes that are possible parents nodes of spoligotype B. Ties in the

maximum weight are broken arbitrarily. The resulting graph is what we refer to as a spoligoforest. Code

for automatically constructing cluster-graphs and spoligoforests from a sample of tuberculosis spoligotypes

was implemented using the visualization software GraphViz [19] The method has been implemented on a

web server and is publicly available at http://emi.unsw.edu.au/spolTools (see [20] for details).

Application of the method to tuberculosis spoligotypes

We applied our new method for constructing forests to data from several data sets. To illustrate the

method, we first use published data from a study on the transmission of tuberculosis in Cuba [21]. Isolates

collected over a year were typed using both spoligotyping and IS6110 typing. One-hundred and fifty-seven

isolates were classified into 47 spoligotype patterns. The clusters of isolates sharing the same spoligotype

are nodes in the diagram, labelled using shared type (ST) numbers in SpolDB4 [22] wherever possible.

When the spoligotype is not found in SpolDB4, we labelled it as ‘Or’ with a number (e.g. Or1). Orphan

spoligotypes are unique alleles without an ST number [23]. Following the description in Tanaka and

Francis [2], we constructed the cluster-graph for these data in a hierarchical layout as shown in Figure 2,

with edges labelled with the weights computed using our selected model. The size of each node reflects the

number of isolates in that node. The resulting graph is a complex network showing all possible

relationships of spoligotypes under our assumptions about the spoligotype mutation processes. The Zipf

model is used to calculate the weights of the edges, as given in Equation (7), of the cluster-graph. In this

cluster-graph, there are 19 nodes with multiple inbound edges. The nodes are labelled according to the

shared type (ST) identifiers used in SpolDB4 [22]. For example, ST 718 has 18 possible parents, while STs

47, 1, 62, 791, 2, 132 and 209, each has 3 possible parents. Of the 83 edges in the cluster-graph, 37 were

chosen for the spoligoforest (see Figure 3). As with the cluster-graph, the nodes in the spoligoforest

represent the number of isolates that share the same spoligotype pattern. If the weight of the edge is equal

to 1, we draw a solid edge, if the weight is greater than or equal to 0.5 but less than 1, a dashed line, and if

less than 0.5, a dotted line.

The spoligoforest consists of two trees (connected components) and eight disconnected nodes. The large

tree has ST 53 at the root, suggesting that ST 53 is the oldest spoligotype in this tree. Seven spoligotypes

are descended from ST 53, two of which have comparably large cluster sizes: ST 50 with 16 isolates and ST

42 with 14 isolates. These two spoligotypes form two distinct lineages diverging from ST 53. A comparison
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with the families in SpolDB4 [22] identified these two lineages to be the Haarlem and LAM

(Latino-American and Mediterranean) families. ST 50 and its descendants ST 47 and ST 3 belong to the

Haarlem family of strains, whereas ST 42 and its descendants STs 81, 20, 74, 33, and 17 are from the LAM

family. ST 80, a disconnected node representing 6 isolates, is also of the Haarlem family. The separate

smaller tree on the right includes ST 1 with 20 isolates. This is the spoligotype of the W-Beijing strain,

known to be widely distributed around the world.

Comparative analyses

In this section, we compare the spoligoforest to two other methods of visualisation, namely phylogenies and

cladograms. We illustrate that using models with AICc values close to that of the Zipf model has minimal

effect on the edges of a spoligoforest.

The branches in a phylogeny show indirect relationships between isolates via implicit common ancestors,

whereas the edges in the spoligoforest describe direct relationships among clusters of spoligotypes.

However, related spoligotypes in the spoligoforest are consistent with inferences on clustered isolates from a

phylogeny. Figure 4 shows a phylogenetic tree based on IS6110 -typing and Figure 5 is a spoligoforest using

data from a prison in Azerbaijan [24]. The tree depicts genetic relatedness of isolates with each other based

on similarities of IS6110 banding. The leaves of this tree have been renamed using STs (shared types from

SpolDB4) of the spoligotypes, so that isolates sharing the same spoligotype may appear in different leaves

of the tree. An inspection of the branch lengths in the phylogenetic tree indicate that ST 42 is most related

to ST 254 (2 isolates of differing IS6110 bands.). The spoligoforest in Figure 5 is consistent with this

observation: ST 42 is chosen as a parent for ST 254, with weight 0.7064 in the cluster-graph (not shown).

Furthermore, the spoligoforest shows that ST 42 is likely to have evolved from ST 53, which cannot be

inferred from Figure 4. Direct links between spoligotypes are also seen in the spoligoforest, for instance the

edge from ST 35 to ST 1050. In the phylogenetic tree, this relationship can be seen in the leftmost group

with STs 35, 62 and 1050. Also, ST 1051 shown to be distant from the other types. It may be worth

investigating whether ST 1051 is more related to the ST 53 group, as shown in the spoligoforest.

A similar network-like technique of visualization to the spoligoforest is the cladogram in Figure 6 of [25].

The method of construction of the cladogram involves using information from nested clades and geographic

location. The main difference between the cladogram and the spoligoforest is that the cladogram involves

the introduction of intermediate steps between types, accounting for possibly unsampled spoligotypes. The

spoligoforest for this data set is shown in Figure 6. The LAM3 and LAM9 groups identified in the
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cladogram are also evident as a subtree in the spoligoforest, with ST 42 at the top of this subtree (see

highlighted region in Figure 6). The relationship of ST G4 with other spoligotypes is different in the two

figures. In the spoligoforest, ST G4 is linked with a dotted line (computed weight of 0.2387 in

cluster-graph, not shown) to ST 42. In the cladogram, however, ST G4 is related to ST 45 through a

conjectured intermediate type. It may be interesting to assess whether ST G4 may be more related to the

LAM3 and LAM9 groups than is shown by the cladogram.

In order to assess the choice of model among the best four, we applied the method to several data sets

using a range of possible models. This procedure has revealed that model selection has minimal impact on

the edges of spoligoforests. We constructed the spoligoforests for six data sets, using the Zeta, Logarithmic

series, Geometric and Empirical models. Table 7 shows the number of differing edges in spoligoforests

constructed from these alternative models, relative to that constructed using the selected model (Zipf).

Clearly, the Zipf and Zeta models are similar, as the only difference between them is that the domain of

the Zipf distribution is finite (see Table 6). The spoligoforest for the data set from Madagascar [26] using

the selected Zipf model is shown in Figure 7. The spoligoforest using a Logarithmic series model (Figure 8)

for the same data set differs from Figure 7 by 4 edges, the highest number of edge differences among the

data sets and models we tested.

Discussion

This paper proposes a new method of visualizing the relationships among genotypes of tuberculosis by

selecting a model of evolution of spoligotypes. The selected model is the Zipf model with parameter p for

deletion length. We have made the spoligoforest application available in the spolTools website

http://www.emi.unsw.edu.au/spolTools.

In this website, users can search through the repository of spoligotype data sets in spolTools as well as

manipulate their own data sets. These data sets can be processed to construct spoligoforests.

A spoligoforest recovers a plausible history of transmission and mutation events. The area of each node is

proportional to the number of isolates (cluster size); edges between nodes reflect evolutionary relationships

between spoligotypes with arrowheads pointing to descendants. A single edge is chosen from multiple

inbound edges using the deletion model, resulting in a forest – that is, a collection of acyclic graphs, or

trees.

Information about the age of a spoligotype is contained in three aspects of a spoligoforest. First, if its node

is large, the strain with that spoligotype may have been transmitted extensively over a long time. Second,
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a large number of descendants (outbound edges) suggests the strain has had a long period over which to

generate mutations. Third, the location of a node also offers clues as to age: the closer it is to a root node,

the older it is. For example, ST 1 in Figure 3 is a root and potentially the oldest spoligotype in this forest.

If a spoligotype node size is large yet located at a tip of the spoligoforest, this mixed signal may indicate

that the strain with the spoligotype is transmitting faster than the other strains in the data set [17]. For

example, ST 42 in Figure 3 has cluster size 14 and 6 outbound edges, whereas ST 81 with 10 isolates only

has 1 outbound edge. ST 81 could therefore be an “emerging strain”. Application of the analysis of Tanaka

and Francis [17] did not, however, identify any rapidly spreading strains in this data set. In this case,

therefore, there is no evidence for the presence of emerging strains. Note that the algorithm for choosing

edges proposed in this study could be used to refine the method of Tanaka and Francis [17].

One way to improve the analysis of strain age and emergence would be to consider spoligotypes in

conjunction with other molecular markers. For example, consider the same two spoligotypes discussed

above (ST 42 and ST 81 from Figure 3). ST 42 has 12 different IS6110 profiles in the data set we used,

while ST 81 has only one. This suggests once again that ST 81 may be associated with a higher

transmission rate than ST 42. Further quantitative analysis would be needed to verify this point.

We note the limitations of our method. First, in choosing a single edge from multiple edges, we assumed

that homoplasy (i.e., a spoligotype arising from more than one parent) does not occur. Because the

number of spacers is finite and the deletion process is discrete, homoplasy may occasionally occur, but it is

likely to be infrequent. The occurrence of homoplasy may have only a minor effect on graph-construction,

producing a small number of cycles if such events could be properly identified. Second, we always choose

one edge (parent) among possible inbound edges into a given spoligotype. It is conceivable, however, that

the given spoligotype did not descend from any of the candidate parents. An improvement to the method

would incorporate a procedure for not choosing any edges when appropriate. Third, as in any statistical

analysis involving samples of data, there could be a bias in sampling. An overrepresentation of a

spoligotype in a sampled data set can lead to biased selection of a parent node. Fourth, our methodology

cannot be applied to markers such as Variable Numbers of Tandem Repeats (VNTR), which is commonly

used to type various bacteria. The mutation process for VNTRs is better modeled using a stepwise

mutation model rather than a deletion model.

Our method may, however, be suitable for markers based on loci of similar structure in some other

bacteria. The direct repeat region of M. tuberculosis is among a family of repetitive genome sequences that

are called Clustered Regularly Interspersed Short Palindromic Repeats (CRISPRs) found in many different
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species of bacteria and archaea [27–29]. Recently, CRISPR systems have received increased attention due

to evidence that links these loci with the acquisition of resistance in bacteria to infection by phages [30].

Examples of these structures have been studied in M. tuberculosis [12, 13], Haloferax mediterranei [31],

Methanocaldococcus jannaschii [27, 32], and Yersinia pestis [33].

The mechanisms that are believed to be involved in the evolution of CRISPR systems involve a frequent

deletion of spacer-repeat motifs (thought to be necessary to prevent over-inflation of the CRISPR

locus [29]) as well as the insertion of new spacers next to the leader sequence due to uptake of phage

DNA [33].

Typing methods similar to spoligotyping for other bacterial isolates with CRISPRs are being developed.

One such typing method (also called spoligotyping) has been applied to Corynebacterium diphtheriae

strains, in which the location and structure of two CRISPR loci have been identified [34]. These loci

consist of 27 spacers (the DRA with 21 spacers and the DRB with 6 spacers) in two different regions of the

genome. The spoligotyping method used in this particular study is similar to the method used for M.

tuberculosis. At present, there is yet to be an analysis of the evolution of these DR loci in C. diphtheriae.

It has also been speculated that in some CRISPRs, new repeat motifs can appear, like those in Yersinia

pestis [33]. Investigations into how these loci evolve may allow the development of methods similar to that

described here.

As with other visualization methods, the groupings and relationships that are seen in the spoligoforest can

be analysed along with the known clinical features of strains. Such analyses are valuable when an

understanding of the history of transmission and mutation of strains is required.

Conclusions

There is a lack of tools for visualizing relationships among tuberculosis isolates that employ a model

describing evolution of a specific marker. Current understanding of the evolution of spoligotypes led us to

a method for visualizing relationships of isolates within a sample. The methodology presented in this paper

may be applied to loci that have the same structure as the DR region of Mycobacterium tuberculosis, and

whose evolution involves the deletion of spacer-repeat motifs. The groupings and relationships that are

seen in the spoligoforest can be analysed along with the clinical features of strains to understand the

evolution of strains.
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Figures
Figure 1 - Models

Relative frequencies of the lengths of spacer deletions (shown here for deletion lengths 1 to 15) estimated

by the models. The gray bars represent the empirical values. Uniform (V) refers to the uniform model with

parameter â = 10, while Uniform (F) is the uniform model with p̂ = 1/43.

Figure 2 - Cluster-graph of Cuban data in Diaz et al. [21] with weighted edges

Nodes are labelled with the ST identifier as indicated in SpolDB4 [22], with the cluster size enclosed in

parentheses. Where the spoligotype does not appear in SpolDB4, it is called an orphan strain, hence

labelled here ‘Or’ with a number. Sizes of nodes reflect the number of isolates sharing the spoligotype

pattern associated with that node. Edges are labelled with corresponding weights that are computed as

explained in the text. For example, ST 1 is inferred to have arisen either from ST 1484 (with weight

0.1666), ST 702 (with weight 0.2752) or Or1 (with weight 0.2809). The lengths of edges do not represent

evolutionary distance.

Figure 3 - The spoligoforest generated from the Cuban data in Diaz et al. [21]

Edges with weights less than 0.5 are drawn as dotted lines, those with weights greater than 0.5 but less

than 1 are dashed, and those where no decision was required to be made are solid. For example, ST 1 is

resolved to have mutated from Or1, and is drawn as a dashed line because it has a weight equal to 0.5582.

As in the cluster-graph, the lengths of edges do not represent evolutionary distance.

Figure 4 - IS6110-based phylogenetic tree from the Azerbaijan data in Pfyffer, et. al. [24]

IS6110 -based phylogenetic tree for data set in [24]. Each tip or leaf of the tree represents an isolate typed

with both IS6110 and spoligotyping. The leaves are labelled with shared types (STs) from SpolDB4.

Those spoligotype patterns not appearing in SpolDB4 (orphans) are labelled as Or1 and Or2. Forty-six

isolates consisting of 25 different IS6110 profiles are all represented by ST 1.

Figure 5 - Spoligoforest of the Azerbaijan data in Pfyffer, et. al. [24]

Spoligoforest for data set in [24]. The labels of the nodes are the same as in Figure 4. ST 1, the W-Beijing

spoligotype, is represented by the largest node. There are at least two clades revealed in the spoligoforest:

the clade with ST 35 and ST 1050, and the clade with ST 53, 42, 254, 118 and 1051.
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Figure 6 - Spoligoforest of Caribbean data in Duchene et al. [25]

Spoligoforest for the Caribbean data set (from Cuba, Haiti and French Antilles) in [25]. The clustering of

spoligotypes from the LAM group appears in the subtree with ST 42 at the top. This group is highlighted

in the spoligoforest, and corresponds to clade 2-1 discussed in [25], which includes the LAM3 and LAM9

families.

Figure 7 - Spoligoforest of Madagascar data in Ferdinand et al. [26] using Zipf model(Equation (6))

Spoligoforest for the Madagascar data set in [26], generated using the selected Zipf model. The edges that

are different from the spoligoforest in Figure 8 are F109→F1, F86→F1202, F47→F46 and F53→F237.

Figure 8 - Spoligoforest of Madagascar data in Ferdinand et al. [26] using alternate Logarithmic series
model. (Equation (4))

Spoligoforest for the Madagascar data set in [26], generated using the alternative Logarithmic series model.

This graph differs from the spoligoforest in Figure 7 by the following edges:

F1521→F1,F156→F1202,F62→F46 and F50→F237.

Tables
Table 1 - Spoligotype data sets used in this analysis

Publication Isolatesa Spoligotypes Location
Soini et al. [35] 1283 227 USA
David et al. [36] 665 159 Portugal
Jou et al. [37] 420 113 Taiwan
Sajduda et al. [38] 251 91 Poland
Nikolayevskyy et al. [39] 225 73 Ukraine
Easterbrook et al. [40] 224 79 Zimbabwe
Mokrousov et al. [41] 123 14 China
Godreuil et al. [42] 120 39 Burkina Faso
Toungoussova et al. [43] 114 17 Russia
Sola et al. [44] 104 56 Italy
Millet et al. [45] 100 21 Japan
Sun et al. [46] 68 41 Singapore
Pfyffer et al. [24] 65 13 Azerbaijan
Banu et al. [47] 48 18 Bangladesh
Douglas et al. [48] 11 8 Philippines
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Table 2 - Data sets and their graph features
Published data set Cluster-graph Spoligoforest Unambiguous
(First Author) edgesa edges b edgesc

Soini 445 126 56
David 403 129 60
Jou 366 84 45
Sajduda 342 63 28
Nikolayevskyy 212 59 29
Sola 137 45 22
Easterbrook 90 53 32
Sun 42 20 15
Godreuil 28 22 18
Mokrousov 27 10 6
Millet 22 13 7
Toungoussova 22 11 8
Banu 13 8 6
Douglas 11 6 3
Pfyffer 8 5 4
Pooled edges 339
a Number of single-event deletions in the cluster-graph.
b Number of single-event deletions in any spoligoforest derived from the data.
c Number of nodes in the cluster-graph having a single parent node.

Table 3 - Frequency of lengths of spacer deletions
Length 1 2 3 4 5 6 9 10 11 12 13 14 15 16 17 26 32
Frequency 199 61 21 25 4 9 3 2 5 1 1 2 2 1 1 1 1

Table 4 - AICc values of models with respect to pooled edges
Model name No. of parameters Parameter estimate AICc

Geometrica 1 p̂ = 0.5935 1128.82
Negative binomiala 2 r̂ = 1;p̂ = 0.5935 1130.82
Conditional Poissona 1 λ̂ = 3.3697 1597.9
Logarithmic seriesa 1 θ̂ = 0.7967 1044.49
Zetaa 1 ρ̂ = 2.0696 1033.46
Zipf k ∈ [1, 43] 1 p̂ = 1.9962 1025.23b

Uniform (V) k ∈ [1, 10] 1 â = 10 1770.39
Uniform (F) k ∈ [1, 43] 1 p̂ = 1/43 2351.77
Empirical-based k ∈ [1, 43] 42 p̂k = xk

m 1066.94
aModel has infinite support for k
bSelected model
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Table 5 - AICc values of models in individual data sets for the best model and the Zipf model
Data set Best model Lowest AICc AICc of Zipf
Soini Log series 175.119 179.154
David Zipf 155.579 155.579
Jou Zipf 126.111 126.111
Sajduda Zipf 93.6016 93.6016
Nikolayevskyy Zipf 107.79 107.79
Sola Zipf 55.8004 55.8004
Easterbrook Log series 82.5029 84.0715
Sun Zipf 21.6428 21.6428
Godreuil Log series 60.6045 62.8431
Mokrousov Zipf 20.1675 20.1675
Millet Zipf 21.7799 21.7799
Toungoussova Log series 34.4701 35.2256
Banu Geometric 31.0965 33.2797
Douglas Log series 19.8291 20.0476
Pfyffer Geometric 22.8621 23.697

Table 6 - Probability mass functions and maximum likelihood estimators of the models considered
Model name support Probability mass function Maximum likelihood estimator
Geometric k ∈ [1,∞) P (K = k) = P (k) = pk−1(1 − p) p̂ = 1 − 1

x̄

Negative binomial k ∈ [1,∞) P (k) = (1−p)r

1−(1−p)r

(

k+r−1
r−1

)

pk

where k, r ≥ 1 p̂ = 1 − r̂
x̄

Conditional Poisson k ∈ [1,∞) P (k) = e−λ λk

k!(1−e−λ)

where k ≥ 1, λ > 0 Solution to x̄ = λ̂/(1 − e−λ̂)

Logarithmic series k ∈ [1,∞) P (k) = − θk

k log(1−θ) Solution to x̄ = −θ̂

(1−θ̂) log(1−θ̂)

Zeta k ∈ [1,∞) P (k) = k−ρ
P

∞

d=1
d−ρ

where ρ > 1 Estimated numerically

Zipf k ∈ [1, 43] P (k) = k−ρ
P

43

d=1
d−ρ

where ρ > 1 Estimated numerically

Uniform k ∈ [1, 43] P (k) = 1
43

∏43
k=1 ( 1

a )xk

Uniform k ∈ [1, a] P (k) = 1
a

where 1 ≤ a ≤ 43 Estimated numerically

Empirical k ∈ [1, 43] P (k) = xk

m

∏43
k=1 P (k)xk

Table 7 - The number of edge differences between spoligoforests using alternate models as compared
with selected model (Zipf)

Data set Zeta Logarithmic Geometric Empirical No. of edges
Diaz et al. [21] 1 0 2 2 37
Duchene et al. [25] 0 3 3 2 42
Ferdinand et al. [26] 0 4∗ 0 0 50
Caws et al. [49] 0 2 2 1 44
Storla et al. [50] 0 0 2 2 42
Godreuil et al. [42] 0 0 1 1 22
∗Spoligoforest shown in Figure 8.
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